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A note on the Kutta condition in Glauert's solution of the thin 
aerofoil problem 

S.W. R I E N S T R A  

Dept. of Mathematics and Computing Science, Eindhoven University of Technology, P. 0. Box 513, 
5600 MB Eindhoven, The Netherlands 

Abstract. Glauert's classical solution of the thin aerofoil problem (a coordinate transformation, and splitting the 
solution into a sum of a singular part and an assumed regular part written as a Fourier sine series) is usually 
presented in textbooks on aerodynamics without a great deal of attention being paid to the r61e of the Kutta 
condition. Sometimes the solution is merely stated, apparently satisfying the Kutta condition automatically. Quite 
often, however, it is misleadingly suggested that it is by the choice of a sine series that the Kutta condition is 
satisfied. 

It is shown here that if Glauert's approach is interpreted in the context of generalised functions, (1) the whole 
solution, i.e. both the singular part and any non-Kutta condition solution, can be written as a sine-series, and (2) it 
is really the coordinate transformation which compels the Kutta condition to be satisfied, as it enhances the edge 
singularities from integrable to non-integrable, and so sifts out solutions not normally representable by a Fourier 
series. 

Furthermore, the present method provides a very direct way to construct other, more singular solutions. 
A practical consequence is that (at least, in principle) in numerical solutions based on Glauert's method, more is 

needed for the Kutta condition than a sine series expansion. 

Introduct ion  

Incompress ib le  inviscid s ta t ionary  two-dimensional  ae rodynamics  is a well-established dis- 
cipline o f  fluid mechanics  ( [ 1 , . . .  , 19]). The  basic p rob lem of  a solid b o d y  in a uni formly  

mov ing  m e d i u m  is descr ibed mathemat ica l ly  by the much  studied Laplace ' s  equa t ion  

t oge the r  with suitable b o u n d a r y  condit ions.  A great  variety o f  solutions and me thods  o f  
solut ion are known,  a m o n g  which the mos t  impor tan t  are those based on the cons t ruc t ion  o f  

an equiva len t  flow pat te rn  via a distr ibution of  e lementa ry  sources such as monopo le s ,  
dipoles ,  and vortices.  

A classic example  is the thin aerofoi l  where  the pe r tu rba t ion  to an o therwise  un i fo rm 

m e a n  flow is descr ibed by a vor tex  sheet  (of s t rength to be de te rmined)  pos i t ioned along the 

aerofoi l  camber l ine  ( thickness is ignored) .  Via the law of  Biot  and Savart  the induced  
veloci ty  field is de te rmined .  T he  condi t ion  o f  a vanishing normal  veloci ty c o m p o n e n t  at the 
aerofoi l  surface,  toge the r  with a l inearisat ion ( the p lanar  wing approximat ion)  using a small 

m e a n  c a m b e r  and small angle o f  a t tack yields an integral  equa t ion  for  the vort ici ty 
dis t r ibut ion,  k n o w n  as the aerofoi l  equat ion.  

The  physically acceptable  solutions to this equa t ion  have at mos t  a square  roo t  singulari ty 
at the edges.  As  the effect  o f  viscosity is excluded f rom the mode l  the solut ion will no t  be 

un ique  wi thout  an addi t ional  condi t ion.  This condi t ion  is usually taken  to be the level of  
s ingulari ty at the  trailing edge.  The  most  c o m m o n  assumpt ion  then is the flow being smoo th  
nea r  the trailing edge (Kut ta  condi t ion) ,  which amoun t s  to a vanishing vortici ty distr ibution.  

The  aerofoi l  equa t ion  is s tudied thorough ly  (Tr icomi  [20]) and analytical  solutions are 
known .  A wel l -known e legant  analytical  solut ion,  cited in m a n y  t ex tbooks  on ae rodynamics ,  
is G laue r t ' s  Four ie r  sine series expans ion  in a t r ans fo rmed  variable (Glauer t  [1]). The  steps 
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taken in this approach are clearly inspired by physical intuition, and motivated by the fact 
that they lead in an ingenious way to a construction of the solution. 

Considering the method in more detail, however, it appears that the Kutta condition is 
nowhere explicitly applied, so this condition must somehow be inherent in one of the steps 
taken. Although not stated by Glauert himself, many authors suggest in their presentation of 
the method that the Kutta condition is applied via the choice of the sine series 
([10 . . . . .  19]). At the origin ( -  the trailing edge) the sine series vanishes irrespective of the 
coefficients, so the Kutta condition is "satisfied". This is, however, only true pointwise. The 
series tends continuously to zero at the origin only if it converges uniformly. This is a 
property which, in general, can only be verified after having obtained the solution. 

The real reason that Glauert 's series solution indeed satisfies the Kutta condition is that 
the other singular solutions have no expansion of the proposed type: the coordinate 
transformation changes the square root singularity into a non-integrable singularity. This 
suggests at the same time that solutions represented by divergent series in the context of 
generalised functions, will include these other solutions. 

In the present note we will try to show how (i) Glauert 's method in the context of 
generalised functions solves the aerofoil equation very directly and completely, and that (ii) 
Glauert 's  original solution satisfies the Kutta condition because of the (tacit) assumption of 
allowing only normally converging series expansions. A direct practical consequence is that, 
at least in principle, great care is necessary when applying numerical methods based on 
Glauert 's  series expansion in related but more complex lifting surface problems. It is not  

sufficient for the Kutta condition merely to pick a series which converges only pointwise to 
zero at the trailing edge, ([21 . . . . .  29]). 

The Kutta condition in Glauert's method 

Glauert 's approach consists of the following steps (Batchelor's notation [2]): (i) a new 
variable 0 is introduced according to x = ½c(1-  cos 0), (ii) an anticipated singular part, 
tan(½ 0), of the vorticity distribution F is taken apart (the solution of the fiat plate problem), 
(iii) the rest is expanded into a Fourier sine series: 

I'= AoW tan(½0) + W ~ A.  sin(n0), 
n = l  

(1) 

which is (iv), after integration, equated term by term to the respective series expansion of 
the aerofoil shape function. For smooth shape functions the Kutta condition is automatically 
satisfied, and the eigensolution, related to the generated circulation, does not appear. 

It appears to be widely believed that step (i) and (ii) are just for convenience, while step 
(iii) is employed to satisfy the Kutta condition F = 0 at 0 = 0, by the argument that "the sum 
is zero because every term is zero". Now this may be true pointwise, but for the Kutta 
condition this is meaningless if F is not continuous at and near 0 = 0. A representation of a 
function by a Fourier series is not necessarily pointwise, and we cannot prescribe the 
behaviour of F near 0 = 0 by its value at 0 = 0. This is obviously illustrated by the example 

sin(n0) 
, (2) 

n = l  
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which is zero at 0 = 0 but behaves like -0-1/2 for 0---> 0. A Fourier series is continuous only 
if it converges uniformly. Therefore, the choice of a sine series is immaterial for a Kutta 
condition. 

The real reason why the Kutta conditions is, indeed, satisfied, is step (i). This step 
transforms an integrable singularity (of order x -1/2) into a non-integrable singularity (of 
order 0-1). Thus the (tacit) assumption that the resulting Fourier series should converge 
only in ordinary sense excludes the divergent series representations of 0 -1 , which would 
otherwise have appeared. (Indeed, under this assumption it is necessary to separate the 
leading edge singularity by means of the tan(½0)-term.) 

If a purely analytical solution is possible it will be produced by the above procedure. 
However, if this procedure is part of a numerical approach, complications may arise. 
Suppose we have a complicated lifting surface problem which has to be solved numerically, 
and we apply the above transformation, isolate the tan(½0) term, and expand the rest into a 
sine series, together with (for example) a collocation procedure. In this case the series 
expansion is necessarily finite, and, without further precautions, there is no reason why a 
divergent part would not be generated, for example, the eigensolution, or, more generally, 
any more singular non-physical solutions. So the solution is still not unique, and may become 
dependent on details of the numerical scheme. See for example [30]. 

It may be noted that there is an analogy with the expansion in duct modes of acoustic or 
electromagnetic waves in wave guides. Suppose we try to solve the bifurcated waveguide 
problem by means of the technique of mode matching ([31], p. 30). Continuity conditions for 
the field at the interfaces lead to an infinite set of simultaneous equations for the unknown 
modal amplitudes. For a physically acceptable solution, the field must remain integrable near 
the edges. This edge condition is reflected in the convergence rate of the modal amplitudes 
([31], p. 34). If the infinite set of equations is truncated, it appears that any of the 
mathematically possible solutions may be selected. Depending on the way of truncation the 
solutions converge to different sets of amplitudes with different asymptotic behaviour, 
corresponding to different edge behaviour. The correct way of truncation is determined by 
the required edge behaviour. 

In the next chapter we adapt the techniques of Glauert's transformation and series 
expansion to the setting of generalised functions. From this we derive the general solution of 
the aerofoil equation and show that both the term tan(½0) and the eigensolution appear 
naturally. Furthermore, the same method will produce every other more singular (and hence 
non-physical) solution to the original problem without any difficulty. 

Analysis 

Consider a thin cambered aerofoil (Fig. 1), described by its camberline y = rt(x), 0 ~ x ~< c. 
This aerofoil perturbs a uniform stream W -- ( -  W cos a, W sin a) by an amount v. Assume 
the angle of incidence a, the aerofoil shape rt and its derivative d~?/dx are small enough for 
linearisation. Then the aerofoil can be represented by a vortex sheet along 0 ~< x ~ c of 
strength F(x). This gives 

1 fo ( - y , x - ~ )  F(~:)d~ ? + 7  2 (3) 
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Fig. 1. Camberline ~(x) of thin aerofoil in stream W. 

The boundary condition of the normal component of velocity W + v vanishing at the aerofoil 
surface yields, after linearisation, the aerofoil equation 

~ dr/(x) 1 F ( f )  d f = - a  0 < x < c  
2~rW ~ dx ' ' 

(4) 

where j: is to be interpreted as a Cauchy principal value. The unknown function here is F. 
This is to be determined under the additional conditions that it is integrable near ~ = 0 and 

-- c (finite energy) and furthermore that it vanishes at ~: = 0 (Kutta condition). 
The transformation 

x = 1 c ( 1 -  cos 0 ) ,  ~ = ½c(1-  cos ¢) (5) 

yields 

1 J~o 3,(~p)sin~0 d~p=o(0 ) ,  0 < 0 < z  r ,  (6) 
cos 0 - cos 

where 7 ( 0 ) = F ( x ) / W  and v (O)=  a + d~l/dx. If F acts like x -1/2 near the edges this is 
transformed into 0-1 behaviour of y, but of course in the integration this is compensated by 
the factor sin ~. 

Up to this point we have closely followed Glauert [1]. We now deviate slightly from the 
way the method is usually presented. We introduce Fourier sine and cosine series for y and 
v, but now without taking apart any foreseen singularities. 

Continue ~/ antisymmetrically and o symmetrically on (-Tr, ~'), and extend both 27r- 
periodically. Assume the Fourier expansions of 3' and v are 

oe 

3/(0) = ~ % sin(n0),  (7) 
n = l  

o ( o )  = On cos(n0). (8) 
n = 0  
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Of course, this continuation is only for convenience. It is possible to write any solution for 
which a Fourier series can be defined in this way. The sine series is certainly not chosen in 
order that the Kutta condition be fulfilled. 

Substitution of (7) and (8) into (6), assuming that integration and summation may be 
exchanged (which is consistent with the assumption of the existence of a Fourier series of 3"), 
and then using (one of) the famous Glauert integrals ([1]) 

fo sin(n~0)sinq~ f o  cos(nqO sin(nO) 
c-o~s ~----~--osO d~p = - z r  cos(nO), cos ~ o s  0 d~0 = zr sin 0 (9) 

yields 

1 ~ 3 'nc°s(n0)= v ncos(n0) ,  0 < 0 < T r .  
n = l  n = 0  

(10) 

Since in general v 0 # 0, equation (10) cannot be solved by any sequence (3',) in the ordinary 
sense. So it would seem that 3' cannot be expanded into a Fourier series. As we will see, this 
is due to the non-integrable behaviour - 0  -1 and - ( ~ ' - 0 )  -1 near the edges. So the 
transformation (5) together with the assumption of a Fourier series acts like a sieve allowing 
no solutions at all. The usual way to remedy this is to take the singularities apart (the 
tan(18)  in eq. (1)), however this is not necessary. A more direct way is to identify solutions 
with generalised functions ([32, 33]), thus allowing a much wider class of Fourier series 
expansions. 

The question now is how to make use of this greater freedom. We are free to add or 
subtract generalised functions provided we still satisfy equation (10). We then examine their 
effect on the Fourier series. Adding zero does not change anything since even in generalised 
sense the Fourier coefficients of the zero function are zero ([33], p. 58). However, since 
equation (10) need only be satisfied on the open  intervals 0 < 0 mod 7r < 7r (i.e. excluding 
the end points), we may add generalised functions whose support is concentrated at the 
integer multiples of 7r without affecting the general solution. Now, it is a standard theorem in 
generalised functions (Jones [32], p. 89) that a generalised function has support concentrated 
at the origin only if it is a finite linear combination of derivatives of delta functions. More 
explicitly, if 

f ( x )  = O f o r x > 0 a n d x < 0  

then 

N 

f ( x )  = ~ a ,8(n)(x)  for any a,  and finite N .  (11) 
n = 0  

This means that we can add multiples of the 2~r-periodic 8-functions of 0 and 0 - 7r, and 
its derivatives, to the right-hand side of (10). Their generalised Fourier expansions ([32], p. 
153) are given by 

27r 8(~)(0 - 21rm) = ~] (in) k e ina (12) 
m = - o o  n = - ~  
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(similarly for 0 =: 0 -  70. For the moment, however, we will restrict ourselves to the 
6-function itself, since the derivatives lead to solutions too singular at the edges. So to 
equation (10) we add 

oo cc 

2w ~ 6 ( 0 -  2,rm) = 1 + 2 ~ cos(n0) 
m -  - ~  n = l  

A times, and 

2 . r  6(0  - ~r - 2~-rn) = 1 + 2 ~ ( -1)"  cos(n0) 
m = - - ~  r t ~ [  

B times to obtain 

½ ~ TnCOS(nO)=vo+ A+ B+ ~ (v. +2A+2(-1)"B)cos(nO). 
n = l  n = l  

This equation has solution 

B= -vo -A ,  

y,  = 2 v ,  - 4(-1)"v 0 + 4(1 - ( - 1 ) " ) A .  
(13) 

Using the generalised identities ([32], p. 155) 

oc 

sin(n0) = ½ cotan(½0) , 
n = l  

o~ 

~] ( -1)"  sin(n0) = -½ tan(½0) , 
n = l  

we obtain the usual form 

y(0) = 2v 0 tan(½0) + 2  ~ o, sin(n0) + 4A/sin 0. 
n = I  

(14) 

This is in physical coordinates 

x/YT  
F ( x ) / W =  200 X/T-z-X- ~ + 4X/-x-7-{ ~ ~ v ~ U . _ l ( 1 - 2 x / c  ) 

n = l  

1 
+ 2 A  ~ / ~ - ~ ~  , (15) 

where U~ denotes the Chebyshev polynomial of second kind and degree n, satisfying 
sin(n0) = sin 0Un_l(cos 0) ([34]). 

The factor of A in (15) is indeed the eigenfunction of the problem without Kutta condition 
(see [20]). For rt (and so: v) smooth enough the Kutta condition is satisfied by taking A = 0. 
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Further generalisations 

Motivated by the physics of the problem we have restricted ourselves until now to integrable 
singular behaviour of F. It is clear that once we have admitted generalised function solutions 
there is, other than physically, no restriction to the singular behaviour. We then have, in 
fact, an infinite number of eigensolutions. Although these eigensolutions may be of little 
importance practically, it is possible that they could play an unfavourable r61e in numerical 
solutions. We therefore include them here for the sake of completeness. 

It is sufficient to consider equation (10) with zero right-hand side. With equation (12) we 
then have in general 

y. cos(n0) = A o + C O + 2 ~'~ ( - - 1 ) k n 2 k [ ( A k  + (--1)'Ck) cos(n0) 
n=l  k=0 n=l  

- n ( B k  + ( - 1 ) 'D~)  sin(n0)] 

which has solutions 

K 
% = 2 ~] (--1)J'nZk(Ak + (--1)"Ck) (16) 

k=O 

if 

A 0 + C O = B k = D k = 0.  

Clearly, the solution consists of linear combinations of e v e n  derivatives of tan(½0) and 
cotan(~-0). To see this, consider for k i> 0 

yn = 2(--1)kn 2k , 

then 

d2k = d2k 
3,(0) = 2 ~ ,=1 ~ sin(n0) = d - ~  cotan(½0). 

= 
(17) 

Similarly, if 

y .  = - 2 ( - 1 ) k  +nn zk , 

then 

d2 k o~ d2 k 

'y (0)  = - -2  d ~  n=lE ( - 1 ) "  sin(n0) = ~ t a n ( 1 0 ) .  
= 

(18) 

Conclusions 

The classical series solution of the thin aerofoil problem developed by Glauert is cited 
throughout the literature. However, the r61e of the Kutta condition, together with the matter 
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of uniqueness of the solution, sometimes seems to have escaped attention. It is either not 
mentioned (since, in general, the Kutta condition is satisfied), or it is claimed to be satisfied 
by the pointwise behaviour of the chosen sine-series (which is not correct). This incorrect 
interpretation has not only relevance to the original incompressible 2 - D problem, but also 
to the application in more complex flow problems, to the finite wing problem where a very 
similar technique is used, and to numerical methods based on this type of series. 

In the present note we have tried to rectify the incorrect interpretation that the choice of a 
Fourier-sine series is sufficient for the Kutta condition, and we have shown that in general 
the Kutta condition is only indirectly satisfied by excluding divergent series. By posing the 
problem in the context of generalised functions it is possible to handle divergent series, and 
the general, non-unique, solution can be found directly without further assumptions. 
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