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A note on the Kutta condition in Glauert’s solution of the thin
aerofoil problem
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5600 MB Eindhoven, The Netherlands

Abstract. Glauert’s classical solution of the thin aerofoil problem (a coordinate transformation, and splitting the
solution into a sum of a singular part and an assumed regular part written as a Fourier sine series) is usually
presented in textbooks on aerodynamics without a great deal of attention being paid to the rdle of the Kutta
condition. Sometimes the solution is merely stated, apparently satisfying the Kutta condition automatically. Quite
often, however, it is misleadingly suggested that it is by the choice of a sine series that the Kutta condition is
satisfied.

It is shown here that if Glauert’s approach is interpreted in the context of generalised functions, (1) the whole
solution, i.e. both the singular part and any non-Kutta condition solution, can be written as a sine-series, and (2) it
is really the coordinate transformation which compels the Kutta condition to be satisfied, as it enhances the edge
singularities from integrable to non-integrable, and so sifts out solutions not normally representable by a Fourier
series.

Furthermore, the present method provides a very direct way to construct other, more singular solutions.

A practical consequence is that (at least, in principle) in numerical solutions based on Glauert’s method, more is
needed for the Kutta condition than a sine series expansion.

Introduction

Incompressible inviscid stationary two-dimensional aerodynamics is a well-established dis-
cipline of fluid mechanics ([1, ..., 19]). The basic problem of a solid body in a uniformly
moving medium is described mathematically by the much studied Laplace’s equation
together with suitable boundary conditions. A great variety of solutions and methods of
solution are known, among which the most important are those based on the construction of
an equivalent flow pattern via a distribution of elementary sources such as monopoles,
dipoles, and vortices.

A classic example is the thin aerofoil where the perturbation to an otherwise uniform
mean flow is described by a vortex sheet (of strength to be determined) positioned along the
aerofoil camberline (thickness is ignored). Via the law of Biot and Savart the induced
velocity field is determined. The condition of a vanishing normal velocity component at the
aerofoil surface, together with a linearisation (the planar wing approximation) using a small
mean camber and small angle of attack yields an integral equation for the vorticity
distribution, known as the aerofoil equation.

The physically acceptable solutions to this equation have at most a square root singularity
at the edges. As the effect of viscosity is excluded from the model the solution will not be
unique without an additional condition. This condition is usually taken to be the level of
singularity at the trailing edge. The most common assumption then is the flow being smooth
near the trailing edge (Kutta condition), which amounts to a vanishing vorticity distribution.

The aerofoil equation is studied thoroughly (Tricomi [20]) and analytical solutions are
known. A well-known elegant analytical solution, cited in many textbooks on aerodynamics,
is Glauert’s Fourier sine series expansion in a transformed variable (Glauert [1]). The steps
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taken in this approach are clearly inspired by physical intuition, and motivated by the fact
that they lead in an ingenious way to a construction of the solution.

Considering the method in more detail, however, it appears that the Kutta condition is
nowhere explicitly applied, so this condition must somehow be inherent in one of the steps
taken. Although not stated by Glauert himself, many authors suggest in their presentation of
the method that the Kutta condition is applied via the choice of the sine series
([10, ..., 19]). At the origin (~ the trailing edge) the sine series vanishes irrespective of the
coefficients, so the Kutta condition is “satisfied”. This is, however, only true pointwise. The
series tends continuously to zero at the origin only if it converges uniformly. This is a
property which, in general, can only be verified after having obtained the solution.

The real reason that Glauert’s series solution indeed satisfies the Kutta condition is that
the other singular solutions have no expansion of the proposed type: the coordinate
transformation changes the square root singularity into a non-integrable singularity. This
suggests at the same time that solutions represented by divergent series in the context of
generalised functions, will include these other solutions.

In the present note we will try to show how (i) Glauert’s method in the context of
generalised functions solves the aerofoil equation very directly and completely, and that (ii)
Glauert’s original solution satisfies the Kutta condition because of the (tacit) assumption of
allowing only normally converging series expansions. A direct practical consequence is that,
at least in principle, great care is necessary when applying numerical methods based on
Glauert’s series expansion in related but more complex lifting surface problems. It is not
sufficient for the Kutta condition merely to pick a series which converges only pointwise to
zero at the trailing edge, ([21,...,29]).

The Kutta condition in Glauert’s method

Glauert’s approach consists of the following steps (Batchelor’s notation [2]): (i) a new
variable 0 is introduced according to x = c(1—cos @), (i) an anticipated singular part,
tan(30), of the vorticity distribution I' is taken apart (the solution of the flat plate problem),
(iii) the rest is expanded into a Fourier sine series:

I'=A,Wtan(16)+ W 2 A,sin(nf), (1)
n=1

which is (iv), after integration, equated term by term to the respective series expansion of
the aerofoil shape function. For smooth shape functions the Kutta condition is automatically
satisfied, and the eigensolution, related to the generated circulation, does not appear.

It appears to be widely believed that step (i) and (ii) are just for convenience, while step
(iii) is employed to satisfy the Kutta condition I' = 0 at § = 0, by the argument that ““the sum
is zero because every term is zero”. Now this may be true pointwise, but for the Kutta
condition this is meaningless if ' is not continuous at and near § = 0. A representation of a
function by a Fourier series is not necessarily pointwise, and we cannot prescribe the
behaviour of I' near § =0 by its value at 6 = 0. This is obviously illustrated by the example

- )
>, snind) @)

n=1
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which is zero at # = 0 but behaves like ~8 ~'"* for 6— 0. A Fourier series is continuous only
if it converges uniformly. Therefore, the choice of a sine series is immaterial for a Kutta
condition.

The real reason why the Kutta conditions is, indeed, satisfied, is step (i). This step
transforms an integrable singularity (of order x™''?) into a non-integrable singularity (of
order 67'). Thus the (tacit) assumption that the resulting Fourier series should converge
only in ordinary sense excludes the divergent series representations of 6~ ', which would
otherwise have appeared. (Indeed, under this assumption it is necessary to separate the
leading edge singularity by means of the tan(16)-term.)

If a purely analytical solution is possible it will be produced by the above procedure.
However, if this procedure is part of a numerical approach, complications may arise.
Suppose we have a complicated lifting surface problem which has to be solved numerically,
and we apply the above transformation, isolate the tan(36) term, and expand the rest into a
sine series, together with (for example) a collocation procedure. In this case the series
expansion is necessarily finite, and, without further precautions, there is no reason why a
divergent part would not be generated, for example, the eigensolution, or, more generally,
any more singular non-physical solutions. So the solution is still not unique, and may become
dependent on details of the numerical scheme. See for example [30].

It may be noted that there is an analogy with the expansion in duct modes of acoustic or
electromagnetic waves in wave guides. Suppose we try to solve the bifurcated waveguide
problem by means of the technique of mode matching ([31], p. 30). Continuity conditions for
the field at the interfaces lead to an infinite set of simultaneous equations for the unknown
modal amplitudes. For a physically acceptable solution, the field must remain integrable near
the edges. This edge condition is reflected in the convergence rate of the modal amplitudes
([31], p. 34). If the infinite set of equations is truncated, it appears that any of the
mathematically possible solutions may be selected. Depending on the way of truncation the
solutions converge to different sets of amplitudes with different asymptotic behaviour,
corresponding to different edge behaviour. The correct way of truncation is determined by
the required edge behaviour.

In the next chapter we adapt the techniques of Glauert’s transformation and series
expansion to the setting of generalised functions. From this we derive the general solution of
the aerofoil equation and show that both the term tan(16) and the eigensolution appear
naturally. Furthermore, the same method will produce every other more singular (and hence
non-physical) solution to the original problem without any difficulty.

Analysis

Consider a thin cambered aerofoil (Fig. 1), described by its camberline y = n(x), 0<x<c.
This aerofoil perturbs a uniform stream W= (~W cos a, W sin @) by an amount v. Assume
the angle of incidence a, the aerofoil shape 7 and its derivative dn/dx are small enough for
linearisation. Then the aerofoil can be represented by a vortex sheet along 0<x =<c of
strength I'(x). This gives

__1_ ¢ (—y’x_é:)
V_27T o (x—§)2+y2 I'(¢)dé¢. (3)
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Fig. 1. Camberline 7(x) of thin aerofoil in stream W.

The boundary condition of the normal component of velocity W + v vanishing at the aerofoil
surface yields, after linearisation, the aerofoil equation

1 ‘T d
W Ox(_§§d§=—a——z(xx), O<x<c, 4)

where { is to be interpreted as a Cauchy principal value. The unknown function here is I
This is to be determined under the additional conditions that it is integrable near £ =0 and
& = c (finite energy) and furthermore that it vanishes at £ =0 (Kutta condition).

The transformation

x=3c(l—cos8), &= 3c(1—cosep) (5)
yields

1 [7 y(e)sing

27 ocoso—cos¢>d¢’=v(9), o<o<m, ©

where y(8) =T(x)/W and v(8) =« +dn/dx. If T acts like x~''* near the edges this is
transformed into @ ' behaviour of vy, but of course in the integration this is compensated by
the factor sin ¢.

Up to this point we have closely followed Glauert [1]. We now deviate slightly from the
way the method is usually presented. We introduce Fourier sine and cosine series for y and
v, but now without taking apart any foreseen singularities.

Continue vy antisymmetrically and v symmetrically on (—, ), and extend both 2r-
periodically. Assume the Fourier expansions of y and v are

v(0)= 21 v, sin(ng) , €))

v(6) = 20 v, cos(nb) . (8)
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Of course, this continuation is only for convenience. It is possible to write any solution for
which a Fourier series can be defined in this way. The sine series is certainly not chosen in
order that the Kutta condition be fulfilled.

Substitution of (7) and (8) into (6), assuming that integration and summation may be
exchanged (which is consistent with the assumption of the existence of a Fourier series of y),
and then using (one of) the famous Glauert integrals ([1])

" sin(ne) sin ¢ _ J[" cos(no) __sin(n)
J[o COSs @ —cos 0 de =~ cos(nf) , 0 CcOs @ —cosf d 7 “sin 6 ®)
yields
12 vy, cos(nf)= 2 v, cos(nd), 0<8<u. (10)
n=1 n=0

Since in general v, # 0, equation (10) cannot be solved by any sequence (7, ) in the ordinary
sense. So it would seem that y cannot be expanded into a Fourier series. As we will see, this
is due to the non-integrable behaviour ~6 ' and ~(7 —6)™' near the edges. So the
transformation (5) together with the assumption of a Fourier series acts like a sieve allowing
no solutions at all. The usual way to remedy this is to take the singularities apart (the
tan(36) in eq. (1)), however this is not necessary. A more direct way is to identify solutions
with generalised functions ([32, 33]), thus allowing a much wider class of Fourier series
expansions.

The question now is how to make use of this greater freedom. We are free to add or
subtract generalised functions provided we still satisfy equation (10). We then examine their
effect on the Fourier series. Adding zero does not change anything since even in generalised
sense the Fourier coefficients of the zero function are zero ([33], p. 58). However, since
equation (10) need only be satisfied on the open intervals 0 <6 mod 7 < 7 (i.e. excluding
the end points), we may add generalised functions whose support is concentrated at the
integer multiples of 7 without affecting the general solution. Now, it is a standard theorem in
generalised functions (Jones [32], p. 89) that a generalised function has support concentrated
at the origin only if it is a finite linear combination of derivatives of delta functions. More
explicitly, if

f(x)=0 for x>0 and x<0

then

N
fx)=2 a,6™(x) for any a, and finite N . (11)
n=0
This means that we can add multiples of the 27 -periodic §-functions of 8 and 6§ — 7, and
its derivatives, to the right-hand side of (10). Their generalised Fourier expansions ([32], p.
153) are given by

2m 2 8W(O-2am)= X (in)*e™ (12)

=—~m
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(similarly for 6 =:9 — @). For the moment, however, we will restrict ourselves to the
o-function itself, since the derivatives lead to solutions too singular at the edges. So to

equation (10) we add

27 i 80 —2mm)=1+2 i cos(nd)

m=-—m n=1
A times, and

27 i 80 —m7—2mm)=1+2 i (—1)" cos(nh)

m=—oc

B times to obtain

n=1
This equation has solution
B=-y,— A,
Y, =2v, —4(-1)'vy +4(1 - (-1))HA.

Using the generalised identities ([32], p. 155)

oc

>, sin(ng) =4 cotan(36),

n=1
>, (=1)"sin(n8) = — ! tan(16),
n=1

we obtain the usual form

¥(0) =20, tan(40) +2 2, v, sin(nf) + 4A/sin 0 .
n=1

This is in physical coordinates

— .
T(x)/W=2v, %ﬁ/c + 4Vxle VI—xlc gl v,U,_,(1-2x/c)

1
+2A ——Fr,
Vx/ic V1 —x/c

Ly v, cos(n@)=v,+ A+ B + > (v, +2A+2(—1)"B) cos(nd) .
n=1

(13)

(14)

(15)

where U, denotes the Chebyshev polynomial of second kind and degree n, satisfying

sin(n@) =sin 8U, _,(cos 8) ([34]).

The factor of A in (15) is indeed the eigenfunction of the problem without Kutta condition
(see [20]). For 7 (and so: v) smooth enough the Kutta condition is satisfied by taking A = 0.
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Further generalisations

Motivated by the physics of the problem we have restricted ourselves until now to integrable
singular behaviour of I'. It is clear that once we have admitted generalised function solutions
there is, other than physically, no restriction to the singular behaviour. We then have, in
fact, an infinite number of eigensolutions. Although these eigensolutions may be of little
importance practically, it is possible that they could play an unfavourable r6le in numerical
solutions. We therefore include them here for the sake of completeness.

It is sufficient to consider equation (10) with zero right-hand side. With equation (12) we
then have in general

i y, cos(nf) = Ay + Cy +2 Z i (—D*n**[(A, + (-1)"C,) cos(n8)

- n(B, +(—1)"D,) sin(n0)]

which has solutions

X
Y, =2 2 (_l)k”Zk(Ak +(-1)"C,) (16)
k=0
if
A,+Cy=B,=D,=0.

Clearly, the solution consists of linear combinations of even derivatives of tan(30) and
cotan(18). To see this, consider for k=0

% =2-1'n,

then

2k x 2k

d ) d
¥(0)=2 0% Zl sin(nf) = 0% cotan(36). (17)

Similarly, if

‘yn = _2(_1)k+nn2k ,

then
d2k hd d2k
70 = 2 —ox gl (=1)" sin(n6) = o tan(}0) . (18)
Conclusions

The classical series solution of the thin aerofoil problem developed by Glauert is cited
throughout the literature. However, the rdle of the Kutta condition, together with the matter
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of uniqueness of the solution, sometimes seems to have escaped attention. It is either not

m

entioned (since, in general, the Kutta condition is satisfied), or it is claimed to be satisfied

by the pointwise behaviour of the chosen sine-series (which is not correct). This incorrect

in

terpretation has not only relevance to the original incompressible 2 — D problem, but also

to the application in more complex flow problems, to the finite wing problem where a very
similar technique is used, and to numerical methods based on this type of series.

In the present note we have tried to rectify the incorrect interpretation that the choice of a

Fourier-sine series is sufficient for the Kutta condition, and we have shown that in general
the Kutta condition is only indirectly satisfied by excluding divergent series. By posing the
problem in the context of generalised functions it is possible to handle divergent series, and
the general, non-unique, solution can be found directly without further assumptions.
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